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The implications of the ZDO approximation for the evaluation of electric and magnetic 
dipole transition moments are analyzed using an overlap ordered expansion of the type pro- 
posed by FISCEn~-HJALMX~S. The relative merits of electric dipole length and electric dipole 
velocity matrix elements are discussed from the point of view of their use in conjunction with 
the ZDO approximation. 

Die Folgerungen aus der ZDO-N~herung fiir die Berechnung elektrischer und magneti- 
scher Dipoliibergangsmomente werden mit Hilfe einer geordaeten Entwicklung der i2~ber- 
lappungsmatrix, wie yon FISCHE~-HJALMA~S vorgcschlagen, untersucht. Die relativen Vor- 
zfige der Benutzung yon Matrixelementen des Dipolmomentoperators einerseits und des 
Impulsoperators andererseits werden im Rahmen der ZDO-N~herung diskutiert. 

Analyse des implications de l'approximation du recouvrement diff6rentiel nul dans 
l%valuation des moments de transition dipolaire @lectrique et magn6tique, en utilisant un 
d6veloppement en s6rie selon les puissances du recouvrement du type de celni propos6 par 
FISCttER-HJALMARS. Les m6rites relatifs des 616merits de matrice des op6rateurs longueur 
dipolaire @lectrique et vitesse dipolaire 61ectrique sont discut6s du point de vue de leur 
utilisation dans le cadre de l'approximation s recouvrement diff6rentiel nul. 

1. Introduction 

One prominent  approximat ion in current molecular orbital calculations on 
larger molecules is the  so-called zero-differential-overlap (ZDO) approximat ion 
[11, 14] according to which the number  and types  of  molecular integrals to be 
evaluated are reduced considerably by  formally neglecting the  overlap distribu- 
t ion for atomic orbitals on different centers. I t  has repeatedly been argued [3, 6, 
8, 12] t h a t  the use of the  ZDO approximat ion amounts  to a reinterpretat ion of 
the  basis set of  a tomic orbitals used for the construct ion of  the molecular orbitals 
such t h a t  this basis set should be a Lowdin  orthogonalized orbital set [5] rather  
t han  a non-or thogonal  set of  e.g. Slater-type orbitals. 

FISCHE~-HJ~L~.~RS [3] has recently derived explicit expressions for such 
orthogonalized orbitals and for the energy matr ix  elements between them in terms 
of  the  original, non-orthogonal  set of  orbitals. This derivation is based upon an 
ordered expansion of  the overlap matr ix  for the relevant orbitals, and it appeared 
in the course of  the derivat ion tha t  nearest  neighbour mat r ix  elements for some 
one-electron operators differ in magni tude  and sign when evaluated respectively in 
the  orthogonal  and in the non-orthogonal  orbital basis. This difference is obtained 
already by  taking first order terms in the overlap-ordered expansion iato account.  
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I t  is, on the other hand, common usage to calculate the one-electron matr ix  
elements which arise in the evaluation of electric and magnetic dipole transition 
moments  [2] for electronic excitations in molecular systems from a non-orthogonal 
atomic orbital set at  the same t ime as the ZDO approximation is invoked for the 
determination of the wavefunctions. I t  therefore seems relevant to investigate 
whether differences similar to those found by  FlSCHE~-HJALMARS [3] for some 
one-electron energy operator matr ix  elements can be expected to appear for the 
operators used in the calculations of electric and magnetic dipole transition 
moments.  This is of particular importance for theoretical calculations of the 
natural  optical ro ta tory  power since in this case the relative signs of the electric 
and magnetic dipole transition moments  are of ult imate importance [9]. 

FlSCHE~-HJ~MA~S' derivations [3] are made under the assumption tha t  each 
atomic center in the molecules contributes only one atomie orbital to the molecular 
orbitals used in the description of the mobile electrons. This is, however, not the 
case if for instance n -- z+ excited states of ketches or heteroaromatics are con- 
sidered. In  these cases at least two atomic orbitals must  be taken explicitly into 
account for some of the atoms. We shall therefore consider the evaluation of the 
matr ix  elements pertinent for the electric and magnetic dipole transition moments  
for two different molecular systems. Firstly, the case t reated by  FISCHEmHJaL- 
gAdS [3] in which the basis set of orbitals contains one orbital per atom. Secondly, 
the situation where the molecular orbitals are built from two mutual ly  orthogonal 
sets of atomic orbitals where some atoms contribute two orbitals. The analysis is 
in both cases carried out to first order in a nearest-neighbour overlap integral only 
since the discrepancies observed by  FISC~E~-HJ~_~MA~s are revealed in this 
order of approximation as mentioned above. 

Electric dipole transition moments  can be calculated on the basis of either 
the electric dipole length operator or the linear momentum operator (also called 
the dipole velocity operator) [2]. For exact wavefunctions the two procedures must  
lead to identical results, whereas inaccurate wavefunctions m a y  lead to notably 
different results for the two operators, and it is a point of current interest and 
discussion which of the two procedures to use in any particular case [4, 15, 17]. We 
shall therefore in the present communication consider the two procedures sepa-  
rately and then ult imately compare their relative merits from the point of view of 
their use in conjunction with the ZDO approximation. 

2. One Orbital per Atom 

a) OrbitaIs and general matrix elements 

We shall in this section briefly recapitulate the pertinent parts  of F l s c ~ -  
HJALM~S' derivations [3]. Consider a non-orthogonal set of atomic orbitals, Z~, 
which are assumed real. I t  is further assumed tha t  no two orbitals are on the same 
center and tha t  all nearest neighbour overlap integrals are of approximately the 
same magnitude. From this set of orbitals one can obtain a set of orthogonalized 
orbitals [5], 2~, by  the equation 

~. = Z "  S - ' / ~  (l) 
where 2 and X are row matrices of the respective orbitals and S is the overlap 
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matrix with elements: 

S~q = S Zp Zq dr" 

This overlap matrix can to first order in a nearest neighbour overlap integral be 
written 

S = l §  

where 1 is a unit matrix and a is a symmetric matrix with elements: 

at,  q = S~,~+1" (~+l,q + S~,~-I . (~-~,q . (2) 

A next-nearest neighbour overlap is of the order of magnitude of the square of a 
nearest neighbour overlap and can hence consistently be neglected here [3]. The 
matrix S -1s is then readily found to first order as : 

S -~/2 = 1 - } a (3) 

and (l), (2) and (3) can be combined to give the following expression for an orbital 
2p belonging to the orthogonalized set 

21, = Y Z~ [S-'/']~r = ~ Z ~ ( a ~  - i a~,~) 
k k 

1 = ZP 2 S~,/0__1 Z~ - I  __ I S/0,~)+1 Z/O+l" (4) 

This orbital is essentially as well localized as the orbital 2~; the additional small 
terms contribute the extra nodes which assure the required first order ortho- 
tonality to the neighbouring orbitals in the set. 

The following general relations between matrix elements of a one electron 
operator, M, evaluated in respectively the 2 and the Z basis are then obtained by 
straightforward application of Eq. (4). The next-nearest neighbour matrix element 
(7) in the 2 basis is included in order to ascertain that  no non-negligible terms 
arise in this matrix element. 

M 
1-8 = <X~, I M ] Z~,} - =  ~,,~,-~ KZ2, I M i X~,-1} + <g~,-~ I M [ X~,>] - 

- = ~,,~,+, [<;r I M I Z~,+I> + <X~,+, I M I Z~,>] (5) 

f~p-M,~p+ldT: = 0~10 [ ] ~'I~+1} M 

= <ZiO I M ] Z/)+l> -- �89 Slo,io+l [<Zlo I M I z~> + <z~+, [ M [ zp+,>] (6) 

f2pMA~+=d'r = <2~ ] I A~+=> M 

= <z~, I M I z~,+=> - } &,,~,+~ <z~+l I M [ z~+=> - 
- -&S = ~+*,)+= <Zp ] M I Z~+l} = 0(.93) (7) 

One electron matrix elements involving two non-orthogonal orbitals Z~ and 
Zq can be expected to be at most of the same order as the corresponding overlap 
integral. All elements connecting non-nearest neighbour orbitals are therefore 
neglected in (5) and (6) whereas we have kept the leading next-nearest neighbour 
term in (7) in order to show that  the three largest terms in the expansion of this 
integral are all of second order. Non-nearest neighbour matrix elements are 
therefore neglected in both the A and the Z basis in the present discussion. 
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b) Electric and magnetic dipole transition moments 

As mentioned in the introduction two different operators can be used for the 
evaluation of the intensity of an electric dipole transition, the two being respec- 
tively the electric dipole length operator [2] : 

e~ = e(ix + iY § ~z) (8) 

where e is the electronic charge, and the linear momentum operator [2] : 

( o  0 0) 
~ = - i ~ 9 = - i h  i ~ - + i ~ - y  + ~ -  . (9) 

The operator for the magnetic dipole transition moment is the angular momentum 
operator [2] : 

i = -  i~(~ x 9) 

�9 
The hermitean character of the three operators gives the following relations: 

<z~ I e': I z~> = <z~ I e': I Z,,> ( l~a) 

where we have utilized that  the operators (9) and (10) are purely imaginary 
whereas the orbitals are assumed real. For the diagonal elements of the last two 
operators we therefore obtain: 

<z~ 1~ ]z~> = o (12a) 
<Zp I 1 ]Z~} = 0 (t2b) 

in agreement with the well-known result that  an electron in a state described by 
a real wavefunction does not carry any linear or angular momentum. Eqs. ( l i )  
and (i2) can then be employed in conjunction with (5) and (6) to give the [irst 
order relations between diagonal and nearest neighbour matrix elements of the 
operators (8) to (i0) evaluated in the 2 and Z bases. One intermediate step is given 
in each of the following equations and the particular relations, ( i ia)  to (12b), 
which go into the rednctions are indicated in sharp parentheses. 

Diagonal elements : 

<x~ I e~ I x~> = <z~ I e~ I X~> -- S~,~- ,  <X~ let I X~-*> -- S~,~+~ <X~ let 1 Z~+I> 

- }  

I e~ I Zv> [from (lia)] 

s,,v-1 [<zp I 01 zp-,> + <x~-i I~ I z,>] - 
s , . ,+l  [<z, I~ I z,+,> + <z,+, I~ t z,>] = o 

[from ( l ib)  and (lSa)] 

[~ lx~>  - 

s~.~+l[<z~ l ~ 1 z~+l> + <z~+~ I ~ I z~>] = o. 
[from (t ie)  and (12b)] 

(i3a) 

(13b) 

(i3c) 
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Nearest neighbour elements: 

<~ l e~ [ ~+1> = <z~ [ ~  [ Z~+l> - 

= <Z~ [P ]ZP § [from (12a)] (145) 

1 S - ~ ~,~+l[<Z~ l I I z~>  + <Z~+l 1~ I Z~+l>] 
= <Zm ] l{ ] Zm+l} �9 [from (12b)] (14e) 

I t  should be noted tha t  (t3b) and (t3c) are correct to all orders of approxima- 
tion since the ~ orbitals are real by  definition [compare (12a) and (t2b)]. Further- 
more, in (14b) and (14c) the terms containing S~,~+1 vanish identically. 

In  (13a) and (14a) we have used tha t  a two confer dipole length matr ix  element 
<Zp [~ ]Zq> can be reduced to an overlap integral [10], although the orbitals 
entering the overlap integral are not necessarily identical to the orbitals in the 
transition moment  integral. From an order of magnitude point of view the correc- 
tion terms in (i3a) are hence of second order and are consequently neglected. The 
terms in (14a) are on the other hand all of first order in the overlap, and even 
though they tend to cancel they will in general leave a small, but  non-vanishing, 
first order value for the matr ix  element <2p [ ~ I2p+~} �9 The nearest neighbour 
elements of the dipole length operator are therefore significantly different in 
magnitude and will, depending on the actual orbitals, in some cases, also be 
different in sign when evaluated in the two bases. This result is similar to what 
was found by  FISOItER-HJALMAI~S for kinetic and potential energy operators, and 
it is in noteworthy contrast to the results obtained for the other matr ix  elements 
considered in (13) and (14). 

The element (14a) will, however, often appear along with the non-vanishing 
diagonal element (13a) in any actual calculation of a dipole transition moment  
(~k I r ] ~ )  between two molecular orbitals 

~k = ~ c ~  2~ 
and P 

~0~ = y. clqAq. 

This is seen from the first order expansion 

<~ I r l~z> = E [e~  e~ < ~  i r ]~p> + (c~  r + c~+~ c~) <~ [ r [ Z~+1>] �9 (15) 
P 

This means tha t  the nearest neighbour element can, for most purposes, be neglected 
compared to the diagonal terms, but  it may  be included in more accurate treat- 
ments by  evaluating the terms in (14a). 

3. Two Mutually 0rthogonal Sets of Atomic 0rbitals 

a) Orbitals and general matrix elements 

We shall in this section consider a molecular system which has an inherent 
symmetry  such that  the pertinent molecular orbitals can be constructed from two 

24 Theorem. chim. Acta (Berl.), Vol. 6 
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mutually orthogonal sets of atomic orbitals, and we shall restrict the considera- 
tions to p-orbitals in real form but without any restrictions on the radial parts. 
I t  is assumed that  no two orbitals belonging to the same set are centered on the 
same atom, whereas two orbitals from different sets may  be associated with one 
atom. Each of the two sets can now be orthogonalized separately by Eq. (t) since 
there are no elements in the overlap matrix connecting orbitals of different sets. 
This gives according to (4) the following expressions for the two resulting sets of 
orthogonalized orbitals (a prime is used to distinguish between members of 
different sets) : 

2p = ZP - -  } Sp,p--1 ~p--1 - -  21-- Sp,/9+I ZP+I (4) 

Matrix elements involving orbitals belonging exclusively to one set are identical 
to those derived in Section i, and we can therefore concentrate on one- and two- 
center integrals in which both primed and unprimed orbitals are represented. The 
localized character of the A orbitMs makes it possible to retain the terminology 
one- respectively two-center terms meaning terms containing orbitals which have 
their peak values at the same or at different centers. Two-center terms others than 
nearest neighbour elements are neglected for reasons analogous to those outlined 
in the discussion of Eq. (7). The one-center and nearest neighbour two-center 
matrix elements of a one-electron operator M are then : 

< ~  [ M ]~,;> = <Zp ] M [ Z;>  - 

- �89 [s~,~-~<zv-,  I ~ I z;  > + s;,~_,<z~ I M I Z;+~>] - 
--  �89 [S~,~+,<Z,+I I-MIX;> + S;,v+l<Zv I M ] Z;+I>] (i7) 

and 

- �89 [s~,~+,<z~ I ~ l z ;  > + s;,~+l<Z~+, I ~ I G+l>] .  (is) 

b) Electric and magnetic dipole transitiou moments 

The three operators under consideration are given in Eqs. (8), (9) and (10), 
and the following relations result directly from the properties of the operators 
and from the fact that  the basis sets are restricted to real orbitals with the same 
/-value, 

<Zv [ P [g'p} = 0 .  (19b) 

Eqs. (i9a) and (i9b) reflect the Laporte rule of atomic spectroscopy [1]. The 
matr ix elements of the angular momentum operator are discussed later. 

The relations between the pertinent one- and two-center matrix elements are 
given below. I t  is in all cases assumed that  two-center integrals are at most of the 
same order as the overlap integral between parallel orbitals on the two atoms. 
The correction terms in (i7) are therefore neglected. 

One-center elements : 

<Av I et l~> = <Zp I et [ Z~> = 0; [from (19a)] (20a) 

<2~ l P [2~> = <Z~ ]P ]Z'v> = 0; [from (i9b)] (20b) 

<~ ]~ l~;>  = <z~ l ~ ] z ; > .  (20e) 
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Two-center elements: 
! l 

I 
= (%~+1 [ e r [ z p > ;  [from (19a)] (2in) 

I g >  = <Z +l l z ;>  - 

= <Zv+, [P I Z;}; [from (19b)] (21b) 

- } [ I z ;>  + sS, ,+,<Z,+l I [ �9 (21e) 

The expressions for the matrix elements of the electric dipole transition 
moments (20a, b) and (21a, b) are in general valid to first order only, however, 
symmetry restrictions may in many cases make the integrals vanish identically. 
The one-center magnetic dipole moment integral (20a) is non-vanishing for 
p-orbitals. This is seen by noting the effect of the components of the angular 
momentum operator Eq. (10) on a set of equivalent p-orbitals. Considering the 

component ix = -- ih y ~-z - z ~  one obtains 

ixpx = 0 (22a) 

Izp~ = ih Pz (22b) 

Ixpz = - ih py . (22c) 
! 

At least one component of the operator (i0) will hence " turn"  Zv into a p-orbital 
with a component along the direction of gv, thereby giving (20c) a non-zero value 
(except in the unusual case where the two orbitals happen to be radially ortho- 
gonal). By the same token the two center magnetic moment integral (Z~ ] 1 ] Z~+~) 
appearing in Eq. (2ie) is equal to ih times an overlap integral since at least one 

t component of 1 will turn gv+l into an orbital parallel to gv" The two terms in (21e) 
are hence of approximately the same magnitude and the phases are such that  

t they in general tend to cancel if the overlaps Sp,v+~ and Sv,v+~ are both non- 
vanishing. In  fact, the right hand side of (2te) vanishes identically for p-orbitals 

! 
perpendicular to the internuclear axis if gv is equivalent to gv for all p. 

The relations in this section are all derived under the assumption of two 
delocalized molecular orbital sets, whereas conventional treatments of n -  ~+ 
excitations, e.g. in ketones [7, 16], assume a delocalizcd a system but  a single 

! 
localized n orbital. The latter case is represented by setting Sv, a = (3~,q leaving 

t ! only Ap = Zv for tha t  particular orbital. The correspondingly simplified versions 
of Eqs. (i7) through (21) are obtained by  neglecting all S~,q retaining only the 
unprimed Sp,q. The only integral which is affected by this is the two-center 
integral (21e) in which the cancellation of terms discussed above is contingent 
upon the non-vanishing values of both Sv,v+l and S~,v+l. I f  only S~,~+1 is retained 
the last term is only approximately half the value of the first term and one obtains 

yielding a non-neglicible first order contribution. 

2 4 *  
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This discussion shows tha t  the only matr ix  element which is affected by  the 
orthogonalisation in the case of two mutual ly  orth0gonal basis sets is the magnetic 
transition moment  (21e) for which special caution should be exercised. Eq. (2tc) 
is, however, correct to first order and can be employed to give the actual value of 
the integral in any particular ca, so. 

4. Conehsion 

According to (13), (14), (20) and (2~) it is consistent, to first order in a typical 
nearest neighbour overlap integral, to use non-orthogonal atomic orbitals for the 
evaluation of molecular electric and magnetic dipole transition moments  at the 
same time as the Z D 0  approximation is invoked for the calculation of the corre- 
sponding energies, except for two integrals. These two are the nearest neighbour 
matr ix  elements of respectively the dipole length operator, Eq. (8), in the case 
where the ~tomie orbitals belong to the same basis set, section 2 Eq. (14a), and 
the magnetic moment  (angular momentum) operator, Eq. (10), in the case where 
the orbitals belong to two different, mutual ly  orthogonal basis sets, section 3 
Eqs. (21c) and (23). Both of these matr ix  elements are of first order when evaluated 
from non-orthogonal orbitals. The nearest-neighbour dipole length integral, (t4a), 
can in the ZDO approximation be neglected for most  purposes, as discussed in 
section 2b, whereas it appears necessary to estimate the value of the two-center 
magnetic moment  integral (21c) in each case. I t  should be remembered tha t  the 
non-nearest neighbour two-center transition moment  integrals are in general of 
second order and tha t  their inclusion, for the sake of consistency, requires explicit 
consideration of the second order terms which are neglected in this discussion. 

A second piece of information which can be gained from the derivations 
concerns the relative merits of the electric dipole length operator (8) and the linear 
momentum operator (9) in the calculation of electric dipole transition intensities. 
The two procedures will in general yield different results when approximate 
wavefunctions are used. I t  was noted in Section 2b tha t  the first order terms 
vanish identically in the expansion of the dipole velocity matr ix  elements, (i3b) 
and (i4b), whereas the nearest neighbour dipole length element, (14a), still 
contains a small first order contribution in the orthogonalized basis. From this 
point of view the relations therefore suggest an advantage in using dipole 
velocity matr ix  elements rather  than  dipole length elements in conjunction with 
the Z D 0  approximation,  unless the proper value of (14a) is assessed by  actual 
ealenlation. 
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